Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Antiviral Res ; 209: 105475, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2240582

ABSTRACT

SARS-CoV-2 is the causative agent of the immune response-driven disease COVID-19 for which new antiviral and anti-inflammatory treatments are urgently needed to reduce recovery time, risk of death and long COVID development. Here, we demonstrate that the immunoregulatory kinase p38 MAPK is activated during viral entry, mediated by the viral spike protein, and drives the harmful virus-induced inflammatory responses. Using primary human lung explants and lung epithelial organoids, we demonstrate that targeting p38 signal transduction with the selective and clinically pre-evaluated inhibitors PH-797804 and VX-702 markedly reduced the expression of the pro-inflammatory cytokines IL6, CXCL8, CXCL10 and TNF-α during infection, while viral replication and the interferon-mediated antiviral response of the lung epithelial barrier were largely maintained. Furthermore, our results reveal a high level of drug synergism of both p38 inhibitors in co-treatments with the nucleoside analogs Remdesivir and Molnupiravir to suppress viral replication of the SARS-CoV-2 variants of concern, revealing an exciting and novel mode of synergistic action of p38 inhibition. These results open new avenues for the improvement of the current treatment strategies for COVID-19.

2.
Cells ; 11(14)2022 07 14.
Article in English | MEDLINE | ID: covidwho-1938703

ABSTRACT

Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae, which will be discussed in this review. In addition, we will highlight some important lessons about the effectiveness of antiviral and immunomodulatory therapeutic strategies that this pandemic has taught us.


Subject(s)
COVID-19 , Animals , Antiviral Agents/therapeutic use , Humans , Inflammation , Pandemics , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671749

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
4.
Front Immunol ; 12: 752227, 2021.
Article in English | MEDLINE | ID: covidwho-1477830

ABSTRACT

Since November 2019 the SARS-CoV-2 pandemic has caused nearly 200 million infection and more than 4 million deaths globally (Updated information from the World Health Organization, as on 2nd Aug 2021). Within only one year into the pandemic, several vaccines were designed and reached approval for the immunization of the world population. The remarkable protective effects of the manufactured vaccines are demonstrated in countries with high vaccination rates, such as Israel and UK. However, limited production capacities, poor distribution infrastructures and political hesitations still hamper the availability of vaccines in many countries. In addition, due to the emergency of SARS-CoV-2 variants with immune escape properties towards the vaccines the global numbers of new infections as well as patients developing severe COVID-19, remains high. New studies reported that about 8% of infected individuals develop long term symptoms with strong personal restrictions on private as well as professional level, which contributes to the long socioeconomic problems caused by this pandemic. Until today, emergency use-approved treatment options for COVID-19 are limited to the antiviral Remdesivir, a nucleoside analogue targeting the viral polymerase, the glucocorticosteroide Dexamethasone as well as neutralizing antibodies. The therapeutic benefits of these treatments are under ongoing debate and clinical studies assessing the efficiency of these treatments are still underway. To identify new therapeutic treatments for COVID-19, now and by the post-pandemic era, diverse experimental approaches are under scientific evaluation in companies and scientific research teams all over the world. To accelerate clinical translation of promising candidates, repurposing approaches of known approved drugs are specifically fostered but also novel technologies are being developed and are under investigation. This review summarizes the recent developments from the lab bench as well as the clinical status of emerging therapeutic candidates and discusses possible therapeutic entry points for the treatment strategies with regard to the biology of SARS-CoV-2 and the clinical course of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines/immunology , SARS-CoV-2/drug effects , Antibodies, Monoclonal/therapeutic use , COVID-19/pathology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL